Business Value of Agile Methods

Using ROI & Real Options

Dr. David F. Rico, PMP, CSM

Twitter: @dr_david_f_rico

Website: http://www.davidfrico.com

LinkedIn: http://www.linkedin.com/in/davidfrico

Facebook: http://www.facebook.com/profile.php?id=1540017424

Author

- □ DoD contractor with 28+ years of IT experience
- □ B.S. Comp. Sci., M.S. Soft. Eng., & D.M. Info. Sys.
- □ Large gov't projects in U.S., Far/Mid-East, & Europe

- → Published six books & numerous journal articles
- → Adjunct at George Washington, UMUC, & Argosy
- → Agile Program Management & Lean Development
- → Specializes in metrics, models, & cost engineering
- → Six Sigma, CMMI, ISO 9001, DoDAF, & DoD 5000
- → Cloud Computing, SOA, Web Services, FOSS, etc.

Agenda

INTRO to Agile Methods

Types of Agile Methods Practices of Agile Methods Studies of Agile Methods Cost & Benefits of Agile Methods Business Value of Agile Methods Comparison of Agile Methods **Summary** of Agile Methods

Today's Environment

- □ Highly-unstable global and domestic markets
- □ Customers are demanding and difficult to please
- Project plans cannot cope with this level of volatility

Augustine, S. (2005). Managing agile projects. Upper Saddle River, NJ: Pearson Education.

Chin, G. (2004). Agile project management: How to succeed in the face of changing project requirements. Broadway, NY: Amacom.

DeCarlo, D. (2004). Extreme project management: Using leadership, principles, and tools to deliver value in the face of volatility. San Francisco, CA: Jossey-Bass. Highsmith, J. A. (2010). Agile project management: Creating innovative products. Boston, MA: Pearson Education.

Need for a New Model

- Need for a new model of project management
- Cope with high-level of uncertainty and ambiguity
- With just the right balance of flexibility and discipline

Augustine, S. (2005). Managing agile projects. Upper Saddle River, NJ: Pearson Education.

Chin, G. (2004). Agile project management: How to succeed in the face of changing project requirements. Broadway, NY: Amacom.

DeCarlo, D. (2004). Extreme project management: Using leadership, principles, and tools to deliver value in the face of volatility. San Francisco, CA: Jossey-Bass. Highsmith, J. A. (2010). Agile project management: Creating innovative products. Boston, MA: Pearson Education.

What is Agility?

- A-gil-i-ty (ə-'ji-lə-tē) Quickness, lightness,
 and ease of movement; To be very nimble
 - The ability to create and respond to change in order to profit in a turbulent global business environment
 - The ability to quickly reprioritize use of resources when requirements, technology, and knowledge shift
 - A very fast response to sudden market changes and emerging threats by intensive customer interaction
 - *Use of* evolutionary, incremental, and iterative delivery to converge on an optimal customer solution
 - *Maximizing the* business value with right-sized, just-enough, and just-in-time processes and documentation

What are Agile Methods?

- □ People centric way to create innovative solutions
- Market centric model to maximize business value
- Alternative to large document based methodologies

Lean & Agile Intersection

- □ Agile is naturally lean and based on small batches
- Agile directly supports six principles of lean thinking
- Agile may be converted to a continuous flow system

Agile Values	Lean Pillars	Lean Principles	Lean & Agile Practices	Flow Principles
Empowered Teams	Respect for People	Relationships	 Customer relationships, satisfaction, trust, and loyalty Team authority, empowerment, and resources Team identification, cohesion, and communication 	Decentralization
01		Customer Value	 Product vision, mission, needs, and capabilities Product scope, constraints, and business value Product objectives, specifications, and performance 	Economic View
Customer Collaboration		Value Stream	 As is policies, processes, procedures, and instructions To be business processes, flowcharts, and swim lanes Initial workflow analysis, metrication, and optimization 	WIP Constraints & Kanban
Iterative Delivery		Continuous Flow	 Batch size, work in process, and artifact size constraints Cadence, queue size, buffers, slack, and bottlenecks Workflow, test, integration, and deployment automation 	Control Cadence & Small Batches
Responding to Change	Continuous Improvement	Customer Pull	 Roadmaps, releases, iterations, and product priorities Epics, themes, feature sets, features, and user stories Product demonstrations, feedback, and new backlogs 	Fast Feedback
		Perfection	 Refactor, test driven design, and continuous integration Standups, retrospectives, and process improvements Organization, project, and process adaptability/flexibility 	Manage Queues/ Exploit Variability

Womack, J. P., & Jones, D. T. (1996). Lean thinking: Banish waste and create wealth in your corporation. New York, NY: Free Press.

Reinertsen, D. G. (2009). The principles of product development flow: Second generation lean product development. New York, NY: Celeritas.

Reagan, R. B., & Rico, D. F. (2010). Lean and agile acquisition and systems engineering: A paradigm whose time has come. DoD AT&L Magazine, 39(6).

Agenda

Intro to Agile Methods

TYPES of Agile Methods

Practices of Agile Methods
Studies of Agile Methods
Cost & Benefits of Agile Methods
Business Value of Agile Methods
Comparison of Agile Methods
Summary of Business Value

Crystal Methods

- Created by Alistair Cockburn in 1991
- □ Has 14 practices, 10 roles, and 25 products
- Scalable family of techniques for critical systems

Scrum

- □ Created by Jeff Sutherland at Easel in 1993
- □ Has 5 practices, 3 roles, 5 products, rules, etc.
- Uses EVM to burn down backlog in 30-day iterations

COPYRIGHT © 2005, MOUNTAIN GOAT SOFTWARE

Dynamic Systems Develop.

- □ Created by group of British firms in 1993
- □ 15 practices, 12 roles, and 23 work products
- Non-proprietary RAD approach from early 1990s

Stapleton, J. (1997). DSDM: A framework for business centered development. Harlow, England: Addison-Wesley.

Feature Driven Development

- Created by Jeff De Luca at Nebulon in 1997
- □ Has 8 practices, 14 roles, and 16 work products
- Uses object-oriented design and code inspections

Extreme Programming

- □ Created by Kent Beck at Chrysler in 1998
- □ Has 28 practices, 7 roles, and 7 work products
- □ Popularized pair programming and test-driven dev.

Beck, K. (2000). Extreme programming explained: Embrace change. Reading, MA: Addison-Wesley.

Kanban

- □ Adapted to IT by Dave Anderson in 2006
- Activities, buffers, queues, WIP limits, tasks, etc.
- Lean, JIT pull/demand system leading to high quality

Agenda

Intro to Agile Methods

Types of Agile Methods

PRACTICES of Agile Methods

Studies of Traditional Methods

Cost & Benefits of Agile Methods

Business Value of Agile Methods

Comparison of Agile Methods

Summary of Agile Methods

Onsite Customers

- □ Term coined by Kent Beck in 1999
- Customer who sits with developers full-time
- □ Fast and efficient way to capture customer needs

Tabaka, J. (2006). Collaboration explained: Facilitation skills for software project leaders. Upper Saddle River, NJ: Addison Wesley.

Release Planning

- Created by Kent Beck at Chrysler in 1998
- □ Project plan with a 30-60-90-day timing horizon
- Disciplined and adaptable project management F/W

User Stories

- □ Term coined by Kent Beck in 1999
- Functions or features of value to customers
- Highly-adaptable requirements engineering process

Cohn, M. (2004). User stories applied: For agile software development. Boston, MA: Addison-Wesley.

Test-Driven Development

- □ Term coined by Kent Beck in 2003
- Consists of writing all tests before design
- Ensures all components are verified and validated

Beck, K. (2003). Test-driven development: By example. Boston, MA: Addison-Wesley.

Pair Development

- □ Term coined by Jim Coplien in 1995
- Consists of two side-by-side developers
- Highly-effective group problem-solving technique

Refactoring

- □ Term coined by William Opdyke in 1990
- Process of frequently redesigning the system
- Improves readability, maintainability, and quality

Continuous Integration

- □ Term coined by Martin Fowler in 1998
- Process of automated build/regression testing
- □ Evaluates impact of changes against entire system

Duvall, P., Matyas, S., & Glover, A. (2006). *Continuous integration: Improving software quality and reducing risk*. Boston, MA: Addison-Wesley. Humble, J., & Farley, D. (2011). *Continuous delivery: Reliable software releases through build, test, and deployment automation*. Boston, MA: Pearson.

Agenda

Intro to Agile Methods

Types of Agile Methods

Practices of Agile Methods

STUDIES of Agile Methods

Cost & Benefits of Agile Methods

Business Value of Agile Methods

Comparison of Agile Methods

Summary of Agile Methods

Surveys of Agile Methods

- Many surveys of agile methods since 2003
- AmbySoft and VersionOne collect annual data
- □ Agile benefits are above 50% in most categories

Year	Organization	Author	Size	Productivity	Quality	Cost
2003	Shine	Johnson	131	93%	88%	49%
2006	Agile Journal	Barnett	400	45%	43%	23%
2007	Microsoft	Begel, et al.	492	14%	32%	16%
2007	UMUC	Rico, et al.	250	81%	80%	75%
2008	AmbySoft	Ambler	642	82%	72%	72%
2008	IT Agile	Wolf, et al.	207	78%	74%	72%
2008	Version One	Hanscom	3,061	74%	68%	38%
	Average				65%	49%

Studies of Agile Methods

- □ Agile (138 pt.) and traditional methods (99 pt.)
- Agile methods fare better in all benefits categories
- Agile methods 359% better than traditional methods

Category	Agile	Traditional	Difference
Cost Reduction	29%	20%	9%
Schedule Reduction	70%	37%	33%
Productivity Improvement	117%	62%	55%
Quality Improvement	74%	50%	24%
Customer Satisfaction Imp.	70%	14%	56%
Return on Investment	2,811%	470%	2,341%

QSM Study (Putnam/SLIM)

- □ Analysis of 23 agile vs. 7,500 traditional projects
- Agile projects are 54% better than traditional ones
- □ Agile has lower costs (61%) and fewer defects (93%)

Mah, M. (2008). Measuring agile in the enterprise: Proceedings of the Agile 2008 Conference, Toronto, Canada.

BTM Study

- Study of 15 agile vs. non-agile Fortune 500 firms
- Based on models to measure organizational agility
- □ Agile firms out perform non-agile firms by up to 36%

Agenda

Intro to Agile Methods

Types of Agile Methods

Practices of Agile Methods

Studies of Agile Methods

COST & BENEFITS of Agile Methods

Business Value of Agile Methods

Comparison of Agile Methods

Summary of Agile Methods

Costs of Agile Methods

- Costs based on productivity and quality models
- \square Development costs based on $LOC \div productivity$ rate
- □ Maintenance costs based on *defects* × *KLOC* × *MH*

No.	Method	Agile Lifecycle Cost Models	Costs
1.	XP	$(10,000 \div 16.1575 + 0.7466 \times 10 \times 100) \times 100$	\$136,551
2.	TDD	$(10,000 \div 29.2800 + 2.1550 \times 10 \times 100) \times 100$	\$249,653
3.	PP	$(10,000 \div 33.4044 + 2.3550 \times 10 \times 100) \times 100$	\$265,436
4.	Scrum	$(10,000 \div 05.4436 + 3.9450 \times 10 \times 100) \times 100$	\$578,202
5.	Agile	$(10,000 \div 21.2374 + 1.7972 \times 10 \times 100) \times 100$	\$226,807

Benefits of Agile Methods

- Benefits based on total traditional less agile costs
- \square Traditional costs based $LOC \times dev. + maint.$ effort
- Traditional costs credited testing effort applied

No.	Method	Agile Lifecycle Benefit Models	Benefits
1.	XP	$(10,000 \times 10.51 - 6,666.67 \times 9) \times 100 - \$136,551$	\$4,373,446
2.	TDD	$(10,000 \times 10.51 - 6,666.67 \times 9) \times 100 - $249,653$	\$4,260,344
3.	PP	$(10,000 \times 10.51 - 6,666.67 \times 9) \times 100 - \$265,436$	\$4,244,561
4.	Scrum	$(10,000 \times 10.51 - 6,666.67 \times 9) \times 100 - \$578,202$	\$3,931,795
5.	Agile	$(10,000 \times 10.51 - 6,666.67 \times 9) \times 100 - $226,807$	\$4,283,190

Agenda

Intro to Agile Methods

Types of Agile Methods

<u>Practices</u> of Agile Methods

Studies of Agile Methods

Cost & Benefits of Agile Methods

BUSINESS VALUE of Agile Methods

<u>Comparison</u> of Agile Methods

Summary of Agile Methods

Measures of Business Value

- A major principle of Agile Methods is creating value
- □ ROI is the measure of value within Agile Methods
- There are seven closely related ROI measures

Metric	Definition	Formula
Costs Sum of Costs	Total amount of money spent	$\sum_{i=1}^{n} Cost_{i}$
Benefits Sum of Benefits	Total amount of money gained	$\sum_{i=1}^n Benefit_i$
B/CR Benefit to Cost Ratio	Ratio of benefits to costs	Benefits Costs
ROI Return on Investment	Ratio of adjusted benefits to costs	$\frac{\textit{Benefits} - \textit{Costs}}{\textit{Costs}} \times 100\%$
NPV Net Present Value	Discounted cash flows	$\sum_{i=1}^{Years} \frac{Benefits_i}{(1 + Discount \ Rate)^{Years}} - Costs_0$
BEP Breakeven Point	Point when benefits exceed costs	New Costs Old Costs/New Costs – 1
Real Options Analysis	Value gained from strategic delay	$N(d_1) \times Benefits - N(d_2) \times Costs \times e^{-Rate \times Years}$

Extreme Programming

- Costs based on avg. productivity and quality
- Productivity ranged from 3.5 to 43 LOC an hour
- Costs were \$136,551, benefits were \$4,373,446

Metric	Formula	Value
Costs	$(10,000 \div 16.1575 + 0.7466 \times 10 \times 30) \times 100$	\$136,551
Benefits	$(10,000 \times 10.51 - 6,666.7 \times 9) \times 100 - \$136,551$	\$4,373,446
B/CR	\$4,373,446 ÷ \$136,551	32:1
ROI	(\$4,373,446 - \$136,551) ÷ \$136,551 × 100%	3,103%
NPV	$(\sum_{i=1}^{5} (\$4,373,446 \div 5) \div 1.05^{5}) - \$136,551$	\$3,650,396
ВЕР	\$136,551 ÷ (\$4,509,997 ÷ \$136,551 – 1)	\$4,263
ROA	$NORMSDIST$ (8.07) \times \$4,373,446 - $NORMSDIST$ (7.59) \times \$136,551 \times EXP (-5% \times 5)	\$4,267,100

Test Driven Development

- \square Costs based on avg, productivity and quality
- Productivity ranged from 12 to 46 LOC an hour
- Costs were \$249,653, benefits were \$4,260,344

Metric	Formula	Value
Costs	$(10,000 \div 29.2800 + 2.1550 \times 10 \times 100) \times 100$	\$249,653
Benefits	$(10,000 \times 10.51 - 6,666.67 \times 9) \times 100 - \$249,653$	\$4,260,344
B/CR	\$4,260,344 ÷ \$249,653	17:1
ROI	(\$4,260,344 - \$249,653) ÷ \$249,653 × 100%	1,607%
NPV	$(\sum_{i=1}^{5} (\$4,260,344 \div 5) \div 1.05^{5}) - \$249,653$	\$3,439,359
ВЕР	\$249,653 ÷ (\$4,509,997 ÷ \$249,653 – 1)	\$14,629
ROA	NORMSDIST(2.79) \times \$4,260,344 - NORMSDIST(1.27) \times \$249,653 \times EXP(-5% \times 5)	\$4,074,506

Pair Programming

- Costs based on avg. productivity and quality
- Productivity ranged from 15 to 86 LOC an hour
- Costs were \$265,436, benefits were \$4,244,561

Metric	Formula	Value
Costs	$(10,000 \div 33.4044 + 2.3550 \times 10 \times 100) \times 100$	\$265,436
Benefits	$(10,000 \times 10.51 - 6,666.67 \times 9) \times 100 - \$265,436$	\$4,244,561
B/CR	\$4,244,561 ÷ \$265,436	16:1
ROI	(\$4,244,561 - \$265,436) ÷ \$265,436 × 100%	1,499%
NPV	$(\sum_{i=1}^{5} (\$4,244,561 \div 5) \div 1.05^{5}) - \$265,436$	\$3,409,909
ВЕР	\$265,436 ÷ (\$4,509,997 ÷ \$265,436 – 1)	\$16,599
ROA	NORMSDIST(2.69) \times \$4,244,561 - NORMSDIST(1.10) \times \$265,436 \times EXP(-5% \times 5)	\$4,050,919

Scrum

- Costs based on avg. productivity and quality
- Productivity ranged from 4.7 to 5.9 LOC an hour
- Costs were \$578,202, benefits were \$3,931,795

Metric	Formula	Value
Costs	$(10,000 \div 5.4436 + 3.9450 \times 10 \times 100) \times 100$	\$578,202
Benefits	$(10,000 \times 10.51 - 6,666.67 \times 9) \times 100 - \$578,202$	\$3,931,795
B/CR	\$3,931,795 ÷ \$578,202	7:1
ROI	(\$3,931,795 - \$578,202) ÷ \$578,202 × 100%	580%
NPV	$(\sum_{i=1}^{5} (\$3,931,795 \div 5) \div 1.05^{5}) - \$578,202$	\$2,826,321
ВЕР	\$578,202 ÷ (\$4,509,997 ÷ \$578,202 – 1)	\$85,029
ROA	NORMSDIST(2.08) \times \$3,931,795 – NORMSDIST(-0.15) \times \$578,202 \times EXP(-5% \times 5)	\$3,660,805

Agile Methods

- \square Costs based on avg. productivity and quality
- Productivity ranged from 3.5 to 86 LOC an hour
- Costs were \$226,807, benefits were \$4,283,190

Metric	Formula	Value
Costs	$(10,000 \div 21.2374 + 1.7972 \times 10 \times 100) \times 100$	\$226,807
Benefits	$(10,000 \times 10.51 - 6,666.67 \times 9) \times 100 - $226,807$	\$4,283,190
B/CR	\$4,283,190 ÷ \$226,807	19:1
ROI	(\$4,283,190 - \$226,807) ÷ \$226,807 × 100%	1,788%
NPV	$(\sum_{i=1}^{5} (\$4,283,190 \div 5) \div 1.05^{5}) - \$226,807$	\$3,481,988
BEP	\$226,807 ÷ (\$4,509,997 ÷ \$226,807 – 1)	\$12,010
ROA	NORMSDIST(2.99) \times \$4,283,190 – NORMSDIST(1.59) \times \$226,807 \times EXP($-5\% \times 5$)	\$4,110,305

Agenda

Intro to Agile Methods

Types of Agile Methods

<u>Practices</u> of Agile Methods

Studies of Agile Methods

Cost & Benefits of Agile Methods

Business Value of Agile Methods

Summary of Agile Methods

ROI of Agile Methods

- XP ROI 18X more than traditional methods
- Scrum ROI 3.4X more than traditional methods
- Agile methods ROI 10X more than trad. methods

Rico, D. F., Sayani, H. H., & Sone, S. (2009). The business value of agile software methods. Ft. Lauderdale, FL: J. Ross Publishing.

Agenda

Intro to Agile Methods

Types of Agile Methods

Practices of Agile Methods

Studies of Agile Methods

Cost & Benefits of Agile Methods

Business Value of Agile Methods

Comparison of Agile Methods

Myths of Agile Methods

- Common myths still abound, although agile methods have been around for ~20 years:
 - Agile is only for software engineering
 - Agile doesn't scale to large systems
 - Agile doesn't use project management
 - *Agile doesn't have any* requirements
 - Agile requires a traditional system architecture
 - Agile doesn't have any documentation
 - Agile isn't disciplined or measurable
 - *Agile has low* quality, maintainability, *and* security

Agile Documentation

- Myth that voluminous documentation is needed
- Myth that agile methods do not use documentation
- □ Right-sized, just-in-time, and just enough documents

Document Type	Agile Documentation
Contracts	Performance-based, time-and-materials, level-of-effort
Project Plans	Release plans, iteration plans, story boards, agile repositories
Requirements	User stories, wire frames, use cases, paper prototypes
Architecture	Metaphors, spikes, system modeling language, DoDAF
Design	Wire frames, design patterns, unified modeling language
Coding	Code patterns, program design language, coding comments
Tests	Unit, component, integration, system, and acceptance tests
User guides	XML documents, online help, Wikis, FAQs, video and audio clips
Quality Assurance	Performance, reliability, code structure analysis, and test reports

When to Use Agile Methods

- On exploratory or research/development projects
- □ When fast customer responsiveness is paramount
- In organizations that are highly-innovative & creative

Traditional Methods

Predictable situations

- Low-technology projects
- Stable, slow-moving industries
- Low-levels of technological change
- Repeatable operations
- Low-rates of changing project performance
- Long-term, fixed-price production contracts
- Achieving concise economic efficiency goals
- Highly-administrative contracts
- Mass production and high-volume manufacturing
- Highly-predictable and stable market conditions
- Low-margin industries such as commodities
- Delivering value at the point-of-plan

Agile Methods

- High-levels of uncertainty and unpredictability
- High-technology projects
- Fast-paced, highly-competitive industries
- Rapid pace of technological change
- Research-oriented, discovery projects
- Large-fluctuations in project performance
- Shorter-term, performance-based RDT&E contracts
- Achieving high-impact product/service effectiveness
- Highly-creative new product development contracts
- Customer-intensive, one-off product/service solutions
- Highly-volatile and unstable market conditions
- High-margin, intellectually-intensive industries
- Delivering value at the point-of-sale

Why is Change Difficult?

- Humans can't cope with large technological change
- □ Changes may be resisted for a long time (years)
- □ Big projects plunge organizations into chaos

Smith, G., & Sidky, A. (2009). Becoming agile: In an imperfect world. Greenwich, CT: Manning Publications.

How to Cross the Chasm

- □ Change, no matter how small or large, is difficult
- □ Cross chasm sooner with smaller focused changes
- □ Shrinking, simplifying, and motivation are key factors

Benefits of Smaller Changes

- Enable us to cross-the-chasm sooner or earlier
- Reduce chaos associated with large-scale change
- □ Reduce or divide the risk of change into small pieces

Smith, G., & Sidky, A. (2009). Becoming agile: In an imperfect world. Greenwich, CT: Manning Publications.

Agile Worldview

- "Agility" has many dimensions beyond IT
- It ranges from leadership to technological agility
- □ This brief focused on costs & benefits of system dev.

Business Value

- Technique for estimating ROI of Agile Methods
- Based on total life cycle costs (both devel./maint.)
- □ Agile Methods have up to ~20 times lower total costs

Agile methods and practices are ...

- **☑** 20 times less expensive
- ☑ 19 times greater benefit/cost ratio
- ☑ 23 times earlier break even point
- ☑ 1,435% greater ROI based on net present value
- ☑ 1,712% greater ROI based on real options analysis

New Book on Agile Methods

- Guide to Agile Methods for business leaders
- Communicates business value of Agile Methods
- Rosetta stone to Agile Methods for traditional folks

Table of Contents

- 1. Introduction to Agile Methods
- 2. Values of Agile Methods
- 3. History of Agile Methods
- 4. Antecedents of Agile Methods
- 5. Types of Agile Methods
- 6. Practices of Agile Methods
- 7. Agile Project Management
- 8. Agile Software Engineering
- 9. Agile Support Processes
- 10. Agile Tools and Technologies
- 11. Comparison of Agile Methods
- 12. Agile Metrics and Models
- 13. Surveys of Agile Methods
- 14. Costs-Benefits of Agile Methods
- 15. ROI Metrics of Agile Methods
- 16. Measures of Agile Methods
- 17. Costs of Agile Methods
- 18. Benefits of Agile Methods
- 19. ROI of Agile Methods
- 20. NPV of Agile Methods
- 21. Real Options of Agile Methods
- 22. Business Value of Agile Methods
- 23. Agile vs. Traditional Methods
- 24. Future of Agile Methods

- http://davidfrico.com/agile-book.htm (Description)
- http://www.amazon.com/dp/1604270314 (Amazon)